Le spectroscope

Spectroscopes

Spectroscopes à prisme et échelle de lecture (en haut) et à réseau (en bas)

Le spectroscope est l’un des outils les plus utiles et puissants du gemmologue. Même s’il nécessite un petit temps
d’adaptation pour son utilisation, cet inconvénient tout relatif est très largement compensé par ses atouts.


Le spectroscope utilise le principe de la diffraction. Il décompose la lumière en couleurs de l’arc en ciel, comme le schéma ci-dessous.

Dispersion de la lumière

Dispersion de la lumière au travers d'un prisme. Source Wikipedia

La composition de la gemme à analyser implique que tous les rayons lumineux ne sont pas transmis. Certains sont absorbés et d’autres sont « boostés ». Les couleurs absorbées apparaissent sombres, c’est ce que l’on appelle des raies ou bandes d’absorption. Les couleurs boostées sont appelées raies d’émission.

Avant de voir comment les utiliser, voyons d’abord les deux types de spectroscopes et leurs avantages/inconvénients.

Spectroscopes à prisme et à réseau

Spectroscopes à prisme et à réseau (répartition du spectre)

Le spectroscope à réseau ou diffraction spectroscope est un tube à l’extrémité duquel est placé un filtre avec une multitude de gravures verticales qui sépare un rayon lumineux en toutes ses composantes de couleurs de l’arc en ciel. On appelle cela un spectre. L’avantage de ce spectroscope est que les longueurs d’ondes sont régulièrement réparties sur toute la largeur du spectre, ce qui le rend facile à lire. C’est le modèle parfait pour débuter! Le revers de la médaille est que ce spectroscope rend une image plus sombre que son homologue à prisme, ce qui nécessite de bien éclairer la pierre.

Le spectroscope à prisme a la même forme que le spectroscope à réseau, sauf que le filtre est remplacé par un prisme. Cela a pour conséquence de rendre le spectre beaucoup plus lumineux, mais également de modifier l’échelle : les longueurs d’ondes les plus longues (rouges) sont plus resserrées que les longueurs d’ondes les plus courtes (violet). Le côté du spectre rouge-orange est donc plus tassé que le côté bleu-violet. Il est difficile dans ces conditions d’estimer la longueur d’onde d’une raie d’absorption ou d’émission. A noter que sur certains modèles plus sophistiqués, un échelle des longueurs d’ondes est incluse (cf le modèle Kruss de la première photo de cette page) Pour apparaitre, l’échelle doit avoir sa propre source lumineuse, ce qui rend ce spectroscope
peu pratique d’utilisation sur le terrain et le limite au laboratoire, sans parler du fait qu’il soit plus fragile et beaucoup plus cher!

L’usage du spectroscope implique d’avoir une lumière présentant l’ensemble du spectre lumineux. En effet, utiliser une lumière sans le jaune par exemple donnerait un spectre avec une bande d’absorption du jaune, qui serait imputable à la source lumineuse et non à la pierre! Les ampoules LED ou à basse consommation présentes des trous dans leur spectre. En observant la lumière du soleil directement, on se rend compte que le spectre du soleil présente lui aussi des raies d’absorption. Ce n’est donc pas une solution. La seule alternative est de se servir d’une lampe avec une ampoule à incandescence de type mini Maglite. Le spectre est un peu vif dans le rouge, mais au moins il est complet. Les raies d’absorption ou d’émission proviendront donc de la pierre
uniquement.

Spectre vu au travers d'un spectroscope à réseau

Spectre vu au travers d'un spectroscope à réseau

Une fois ces précautions prises, il suffit d’aligner la source lumineuse, la pierre et le spectroscope pour démarrer les observations. Il y a trois types d’éléments visibles dans un spectroscope : les raies d’absorption, les bandes d’absorption et les raies d’émission.

La plupart des éléments chimiques absorbent certaines longueurs d’ondes du spectre visible. Quand ces longueurs d’ondes sont étroites, on observe des raies fines (les petits traits noirs n°1). Quand les longueurs d’ondes sont nombreuses et collées, c’est une bande sombre qu’on observe (n°2). Enfin, quand les longueurs d’ondes absorbées renvoient de l’énergie, on peut parfois voir des raies d’émission (les traits en surbrillance n°3)

Chaque spectre est typique d’une gemme. Certains spectres sont caractéristiques, comme celui du zircon qui présente parfois un spectre en réseau, avec une multitude de raies d’absorption.

Il faut observer une grande variété de gemmes afin de retenir les spectres, car les spectroscopes pour amateurs n’ont en général pas d’échelle graduée. De toute façon, sur le terrain il est beaucoup plus rapide et pratique d’utiliser un spectroscope sans échelle.

Le spectroscope est surtout utile pour séparer rapidement des gemmes visuellement proches comme le spinelle et le corindon. En revanche, il ne permet généralement pas de séparer les gemmes naturelles des gemmes synthétiques car elles ont la même formule chimique. Il ne permet pas non plus d’identifier les traitements.

>